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A binary liquid undergoes unidirectional solidification. The one-dimensional steady 
state is susceptible to morphological instability that causes the solid/liquid interface 
to change from a planar state to a cellular pattern. This paper examines the effect’s 
on this transition of volume-change convection, buoyancy-driven convection or 
forced flows. It emphasizes how flows alter stability limits, create scale and pattern 
changes in morphology, and create, through coupling, new instabilities. Emphasis is 
placed on the physical mechanisms of the interactions. 

1. Introduction 
The solidification of a liquid involves a complex interplay of many physical effects. 

The solid/liquid interface is an active free boundary on which latent heat is liberated 
during phase transformation. This heat is conducted away from the interface 
through the solid and/or liquid establishing thermal boundary layers near the 
interface. Further, across the interface the density changes, say, from p L  tops. Thus, 
if ps > p L ,  so that the material shrinks upon solidification, there is a flow induced 
toward the interface from ‘infinity’. 

If the liquid is not pure, but contains solute, then preferential rejection or 
incorporation of solute generally occurs at the interface. For example, if there is a 
single solute present and its solubility is smaller in the (crystalline) solid than it is in 
the liquid, the solute will be rejected at the interface. This rejected material of 
concentration c is diffused away from the interface through the solid and/or liquid 
setting up concentration boundary layers near the interface. The thermal- and 
concentration-boundary-layer distributions determine in part whether there exist 
morphological instabilities in solidification. 

If the solidification process occurs in a gravitational field, the thermal and solutal 
gradients induce buoyancy-driven convection that is known to greatly affect the 
interfacial patterns and hence the solidification microstructures that are prcscnt in 
the solidified material (see e.g. Rosenberger 1979, p. 2). 

The present paper concerns various aspects of directional solidiJication. Figure 1 
shows a typical experimental configuration in which two constant-temperature 
sources are fixed in a laboratory frame. A binary liquid fills the region between two 
parallel, closely spaced plates forming a Hele-Shaw cell. When the plates are laid 
across the temperature sources, the material solidifies a t  a position where the local 
temperature equals the melting (or solidification) temperature T, ; the interface is 
planar in this static configuration. The plates are now pulled a t  constant speed V 
downward, toward the solid. After transients have disappeared, the solid/liquid 
interface remains stationary in the laboratory frame, since it is ‘pinned’ a t  T = TI, 



242 S. H .  Davis 

Interface 

Front view Side view 

V 

FIGURE 1. Configuration for directional solidification in a Hele-Shaw cell. The mean position of the 
interface is z = 0 and the temperature T is linear in the ‘frozen-temperature approximation’. 

yet the material is continuously solidified a t  rate V.  (T,  now differs somewhat from the 
in the static state since TI  = TI ( c I ) . )  This configuration is widely used for detailed 

experiments with organic binary liquids since the material is transparent, and the 
thin-domain geometry allows visual/optical viewing of the interface. To be sure, the 
growth of single crystals commercially or in natural contexts involves the growth in 
fully three-dimensional geometries of opaque metallic or semiconductor materials. 

It is known on the bases of theory (Mullins & Sekerka 1964) and of experiment 
(Rutter & Chalmers 1953; Boettinger, et al. 1984; Trevedi, Sekhar & Seetharaman 
1989) that the interface remains planar during solidification of binary liquids a t  non- 
zero values of the pulling speed V until a first critical value V ,  is attained ; see figure 
~ ( c c ) .  Near V,, nearly two-dimensional steady cells will appear, as shown in figure 
2 (b ) ,  and these deepen as V is increased (see figure 2 c ) .  As V is increased further, there 
is a dendritic transition in which deep cells develop side branches, as shown in figure 
2 (d) .  Finally, there is a second critical value of V ,  V = V,, the absolute stability limit; 
as V + V,, these dendritic structures fade to cells, and the cells fade further until the 
planar interface regains stability. The article by Langer (1980) gives an overview of 
these events and also discusses solidification phenomena that occur in other contexts. 

The ‘pure ’ morphological instability in unidirectional solidification is diffusive in 
nature, being driven by the adverse gradient of solute concentration c a t  the interface 
as will be explained in $2. The onset of cellular structure creates lateral variations in 
c in the liquid and when solute is rejected, its concentration is elevated in the troughs 
of the cells. When the grooves between cells, shown in figure 2 ( c ) ,  are deep, the solute 
is trapped there ; the large path lengths from the root to the bulk liquid above make 
longitudinal diffusion very slow compared to the rate of growth a t  the tip. The 
solidified material will inherit these non-uniformities, a set of high-c stripes parallel 
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FIGURE 2. A rough sketch of interface shapes: (a )  the plane interface, (6) shallow cells, 
(c) deep cells, (d )  the dendrite. 

to the growth direction. The stripes extend downward until a new phase (not shown) 
is encountered. 

When the liquid is flowing, the solute distribution is rearranged. It may be 
homogenized and so delay the morphological instability. However, if the flow is 
unsteady, say time periodic, the temperature oscillation will be accompanied by 
oscillations in c at  the interface. These oscillations cause both modulation of the 
boundary-layer thicknesses and of the growth speed V.  These in turn will create 
variations in concentration in the solid, resulting in striations, bands of concentration 
variations, perpendicular to the growth direction. Oscillatory motion in the liquid is 
one of the most frequent causes of crystalline inhomogeneities (Rosenberger 1979, p. 
2). 

In  the present paper we investigate the effects of hydrodynamics in directional 
solidification. We find that the flow can alter the critical conditions for the onset of 
morphological instability. It can create scale and pattern changes in the morphology. 
It can create, through coupling, new instabilities that pre-empt the old and give new 
criteria for morphological changes. In  $2 we outline the ‘pure ’ morphological- 
instability problem. In $3  we detail the types of interactions that can occur. In  $4 
we discuss volume-change convection (pL =I= ps) and the important solute-transport 
mechanisms. In $5 we examine coupled morphological/buoyant-convective insta- 
bilities. In  $6 we examine forced flows imposed on interfaces and highlight flow- 
induced morphological instabilities. In  $ 7  we examine flows on developed cells or 
dendrites. Section 8 gives a closing discussion of some issues omitted earlier. 

Directional solidification, actually unidirectional solidification, simulates one- 
dimensional phase change with control of the temperature field and pulling rate P. 
It thus allows for the study of small-scale phenomena in controlled phase 
transformation. One can study the growth of single crystals, the initiation of cellular 
instabilities, and the transition to dendritic structure. There is an important 
category of phenomena that are large scale, ones that involve large gradients, 
multidirectional solidification, turbulent double-diffusive ’ convection, and whole 
beds of dendrites. These occur in casting processes and in geological settings. Many 
of these topics are discussed in the article by Huppert (1990). 
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2. Morphological instabilities (MI) 
Figure 1 shows a directional-solidification cell in which a binary liquid undergoes 

phase transformation at melting temperature TI. Convection is absent and for 
simplicity of presentation the system is taken to be two-dimensional. We further 
invoke the ' frozen-temperature approximation ' (Langer 1980) which gives the 
temperature T in the solid and liquid permanently by 

T = T,+Gz, (2 .1 )  

where G is the (imposed) temperature gradient, z is the coordinate along the 
temperature gradient and T, is a reference temperature. 

Form (2 .1 )  is a good approximation when (i) the latent heat L liberated a t  the 
interface is conducted away much faster than the interface advances (small Stefan 
number), (i i)  the solute diffusion is much slower than the thermal conduction (so that 
on small lengthscales solute effects are rate limiting), and (iii) the thermal 
conductivities, k, and k, of the solid and liquid, respectively, are taken to be equal. 
The details of the t,hermal field are relatively unimportant in directional solidification 
since the liberated heat conducts predominantly downward through the (cold) solid 
and, perhaps, the sidewalls, but only slightly affects the conditions in the liquid. 

Given that the temperature field (2 .1 )  is passive, it is only the solute concentration 
c in the liquid that can be perturbed. If the coordinate system moves with the planar 
interface, the diffusion equation has the form 

ct - VcZ = DV%, (2 .2 )  

where subscripts denote partial differentiation and D is the diffusivity of the solute 
in the liquid. 

The instability is driven a t  the interface z = h ( z , t )  where jump conditions are 
obtained using the assumption of local thermodynamic equilibrium. 

At the interface, the solute, assumed dilute, is rejected causing a discontinuity in 
c across the interface. This is measured by the segregation (or distribution) coefficient 
k, 

k = c - / c + ,  (2.3) 

taken from a linearized phase diagram. Since rejection is taking place, 0 < k < 1, and 
the concentration, c+, on the liquid side exceeds that, c-,  on the solid side. 

The temperature TI  on the interface is given by the Gibbs-Thompson equation 

q = m c + + l ; [ l + 2 H ; ] ,  (2.4a) 

where 2H = V -  {[l+ (Vh(']-;Vh). (2 .4b)  

Here, m, m < 0, is the slope of the liquidus, and mc+ represents the alteration of the 
melting point due to the presence of solute, the constitutional undercooling. The 
surface energy y enters the capillary undercooling term in which y / L  multiplies 2H, 
twice the mean curvature of the interface; the melting point is lowered when the 
interface is concave toward the solid. 

If we combine (2 .1)  and (2 .4 ) ,  we obtain 

T,-T,+Gh = mc++TM-2H.  Y 
L 
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Finally, there is the solute balance across the interface, 

( C ' - c - )  (V+h,) = -D(c:-c,+h,). (2.6) 

(1 - k) c+( v+ h,) = -D(c t  - c; h,). (2.7) 

If we combine (2.3) and (2.6), we have 

Given that the linear profile (2.1) for the temperature is used and confining our 
attention to lengthscales much smaller than L+, the top of the cell, z = L+, can be 
replaced by infinity ; we then have that 

c + c ,  asz+co. (2.8) 
System (2 .2 ) ,  (2.52, (2.7) and (2.8) represents the simplest model of 'pure' 

morphological instabilities, which we abbreviate as MI. It assumes that the densities 
ps and p L  are equal so that convection due to volume changes is absent. It assumes 
that body forces are absent so that buoyancy-driven convection is also absent. It 
ignores diffusion in the solid and invokes the ' frozen-temperature approximation '. It 
is written in two dimensions and is a special case of that posed by Mullins &, Sekerka 
(1964). 

There is a steady basic state that consists of a planar interface, 

m = o ,  ( 2 . 9 ~ )  

a constant concentration cs in the solid, a concentration boundary layer in the liquid 

where 
m 
k To-TM = -c,, 

(2 .9b)  

( 2 . 9 ~ )  

and 8, = D / V .  (2.10) 

(2.1 1) 

Notice that by using (2 .3 ) ,  (2.8) and (2.9b) evaluated at  z = 0, 

c- = c, f cs, C+ = cs /k  e CL. 

In  actuality, the basic state has exponential structure in both c and T, with the 
concentration-boundary-layer thickness 8, and that for temperature 8, = K / V ,  
where K is the thermal diffusivity in the liquid. However, by assumption K 9 D ,  and 
the thermal profile becomes the linear one given by (2.1). 

The instability of the planar basic state was explained first by Tiller et al. (1953) 
and a full linear-stability theory, including the effects of surface energy, was first 
given by Mullins & Sekerka (1964). Coriell, McFadden & Sekerka (1985) give a fine 
survey of past results. The mechanism can be explained (Langer 1980) by the use of 
figure 3, which shows the basic state, c and h, and an initial disturbance of the system 
in the form of an interfacial corrugation. A bump of solid pushes its front into a 
higher temperature environment and thus tends to melt back; the temperature 
distribution is stabilizing. A bump of solid is concave downward and so by the 
Gibbs-Thomson effect has its local melting point decreased. By (2.4) the bump tends 
to melt back; surface energy is stabilizing. A bump of solid will compress the 
isopycnals in the liquid above it. Thus, the local concentration gradient is increased. 
By (2.6) the local growth rate will increase. The material in front of the bump will 
freeze faster and the interfacial growth will tend to run away; the concentration 
gradient G, at  the interface drives the instability. 
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FIGURE 3. ( w )  The basic-state fields. (b) The corrugated interface. 

We can calculate G, from (2.9) and find that 

(2.12) 

We see that JG,( increases with increasing pulling rate V ,  and with increased 
concentrations c, of solute present. It decreases the faster the diffusion removes the 
rejected solute from the interfacial region. When k + 0, all the solute is rejected from 
the solid and IGc( is large. When k + 1 ,  there is no rejection, cs = cL, and hence no 
morphological instability. 

The stability index can be expressed as the ratio M ,  

(2.13) 

The liquid is constitutionally undercooled if M > 1.  When surface energy is present, 
the condition for instability (Mullins & Sekerka 1964) is M > M ,  where M ,  2 1 .  

The linear-stability-theory results of Mullins & Sekerka (1964) can be represented 
in the ‘frozen-temperature approximation’ by figure 4, here for the case of 
succinonitrile-acetone (SCN-A) which has k , / k ,  z 1.009. For a given temperature 
gradient G, one fixes c, and increases V .  If c, < c z ,  the system is below the critical 
concentration c z  and the planar state is stable. If c, > c z ,  then there is a first critical 
speed V,, beyond which the basic state is unstable to steady (two-dimensional) cells. 
According to linear theory, there is a second critical value, the absolute-stability 
limit V,, above which the basic state restabilizes. 

Figure 4 ( a )  indicates that the neutral curve splits into two portions. The dashed 
curve, nearly the whole lower branch, corresponds to subcritical bifurcation to two- 
dimensional cells, as obtained by the first weakly nonlinear theory, that of Wollkind 
& Segel (1970). The solid curve, indicates supercritical bifurcation, and occupies the 
whole upper branch and a small section of lower branch. 

When the ‘ frozen-temperature ’ approximation is relaxed, the critical conditions 
on the lower branch are only slightly altered. However, the position of the transition 
point separating subcritical/supercritical bifurcation behaviour can move sub- 
stantially. Alexander, Wollkind & Sekerka (1986) performed such an analysis in two 
dimensions. Figure 4(6) shows the neutral curve for SCN-A, analogous to that in 
figure 4(a ) .  Figure 4 is taken from Merchant & Davis (19896) who use these to argue 
that shallow cells in MI can be produced in laboratory experiments to give the linear 
and weakly nonlinear theories quantitative tests. 
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FIGURE 4. Neutral curves of Mullins & Sekerka (1964) theory for SCK-A for various C (K/cm), 
taken from Merchant & Davis (1989b), subject to  (a) the ‘frozen-temperature approximation ’, ( b )  
the full effects of differing thermal conductivities and latent heat. Solid (dashed) lines correspond 
to  supercritical (subcritical) bifurcation and TP denotes the transition point tha t  separates these 
(according to  Wollkind & Segel 1970 and Alexander et al. 1986). The open circles correspond to 
experimental results of Eshelman & Trevedi (1987). The nose of a given curve has coordinates 
( c z ,  V * ) .  Note that  the lower branch away from the nose is given by M x 1. 

Let I ,  be the capillary length, 
Y T M  k 

= Lm(k- 1 )  c ,  
(2.14) 

For large undercooling, mG, % G, (well beyond the lower linear-stability boundary) 
the wavelength A of the cells is determined by solute rejection and surface energy so 
that (Langer 1980) 

A/&, ot (ZC/&$ ( 2 . 1 5 ~ )  

9 FLM 212 
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Since I, is normally much smaller than S,, h is usually much smaller than 6,. When 
the system is near the lower linear-stability boundary, mG, x G, the speeds are lower 
and the wavelengths are larger, 

A/% (m):. (2.15 b )  

The 'frozen-temperature ' approximation is based on k , / k ,  = 1 and the inequalities 
6, $ L+, 6, $ a,, where L+ is the distance from the interface to the heat source as 
shown in figure 1. When the disturbance wavelength h is large enough that i t  is 
comparable with min(&,, L+), then the curvature of the temperature profile may 
become important. Long waves are, indeed, preferred in MI in two cases: (i) on the 
lower branch if one allows the distribution coefficient k to be small, A, - k-i as shown 
by Sivashinsky (1983); (ii) on the upper branch if one approaches the absolute- 
stability limit, V+V, (Mullins & Sekerka 1964). In  both these cases care must be 
exercised when using the local linear form for the temperature. 

There have been numerous studies of nonlinear cellular behaviour in addition to 
those of Wollkind & Segel (1970) and Alexander et al. (1986). Sriranganathan, 
Wollkind & Oulton (1983) and Wollkind, Sriranganathan & Oulton (1984) sought 
weakly nonlinear three-dimensional states but these are unstable unless extra 
physical effects are included. Ungar & Brown (1984a, b)  and Ungar, Bennett & 
Brown (1985) studied deep cells and their two-dimensional secondary bifurcations in 
spatially periodic boxes using finite-element simulations. McFadden, Boisvert & 
Coriell(l987) used finite-difference simulation for the Al-Cr system, k > 1, and found 
stable hexagonal nodes. Merchant & Davis (19894 studied two-dimensional 
bifurcations a t  c, x c:, and find multiple solutions and isolated solutions as 
functions of k , /k , ;  latent heat is neglected. 

Sivashinsky (1983) studied the lower branch for k + O  and obtained a weakly 
nonlinear evolution equation that displays subcritical bifurcation. This was extended 
to include latent-heat effects by Novick-Cohen & Sivashinsky (1986). Brattkus & 
Davis ( 1 9 8 8 ~ )  examined the long-wave instabilities near V = V' and derived a 
strongly nonlinear evolution equation. When this was specialized to small-amplitude 
two-dimensional disturbances, supercritical bifurcation was found. When three- 
dimensional disturbances were allowed, all two-dimensional states were found to 
become unstable and stable hexagonal nodes were found for both k c 1 and k > 1. 
Riley & Davis (1990) examined the long-wave evolution for k+O but far from 
mG, = G and found a new strongly nonlinear evolution equation intermediate 
between those of Sivashinsky and Brattkus/Davis that  tracks the transition in two 
dimensions between subcritical and supercritical bifurcation. 

3. Interactions of hydrodynamics and morphology 
When one attempts to grow single crystals, the state of pure diffusion rarely exists. 

Usually flow is present in the melt; it  may be created by direct forcing or it may be 
due to the presence of convection. Brown (1988) gives a broad survey of the 
processing configurations and the types of flows that occur. 

There are many examples of forced flows. The crystal may be rotated to erase non- 
axially symmetric thermal effects, but i t  creates a von KBrman swirl flow. The use 
of microgravity environments for the growth of crystals suppresses major buoyancy 
effects but the lurching of the spacecraft' creates transient accelerations, g-jitter, that 
stir the liquid. 
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There are three types of convection that can occur in the liquid. (i) If the density 
of the liquid and solid are different, then bulk flows in the liquid are driven normal 
to the interface ; this is volume-change convection, which is present even in Space. (ii) 
There is buoyancy-driven convection created by density gradients. In  binary liquids, 
the double-diffusive convection can be steady when Rayleigh numbers exceed critical 
values or at arbitrary Rayleigh numbers owing to  the presence of, say, heat losses a t  
the sidewalls of the container. If the Rayleigh numbers are high enough, the steady 
convection can become unstable and, perhaps, unsteady. This is often the case in 
metallic or semiconductor materials which have very small Prandtl numbers. (iii) 
When fluid-fluid interfaces are present, as in the case of containerless processing by 
float-zone methods or the reprocessing of surfaces by lasers, steep temperature and 
concentration gradients on these interfaces can drive steady thermo-soluto-capillary 
convection. If these steady flows become unstable, unsteady states can occur. 

All of the above-mentioned flows are in a sense accidental or a t  any rate 
unintentional. They cannot be prevented or else are present, as in the case of the 
swirl, because the rotation is necessary for other reasons. There can also be 
intentionally imposed flows. In the 1960’s Hurle suggested that rather than crystal 
growers bemoaning the presence of convection as a source of crystal non-uniformities, 
they should try to ‘design’ natural convection (or forced flows) that will homogenize 
the solute boundary layer a t  the interface. In  effect this would decrease the local 
gradient IGJ enough to eliminate the possibility of morphological instabilities. This 
attractive possibility has motivated a good deal of work on the coupling of flow and 
morphology. 

If one entertains the possibility of interactions between morphology and, say, 
convection, one can imagine several modes of interaction. (i) If the solid and liquid 
have different densities, the interface drives a convective flow. We examine this in 
volume-change convection in $4. This discussion also serves as a vehicle for 
identifying the principal modes of solute transport in directional solidification. (ii) If 
one solidifies upward, as shown in figure 1, and if the solute rejected has lower density 
than the melt, then liquid is stably stratified thermally but unstably stratified 
solutally. Thus, there can be convective as well as morphological instabilities. There 
is the possibility that these can occur simultaneously and thus be strongly coupled. 
We examine these in $5.  (iii) If the instabilities do not couple tightly at their onset, 
then one or the other dominates. In  $6 we examine how morphological instabilities 
are affected by an existing flow in the liquid. Here we discover that the presence of 
the flow creates a coupled instability in the interface, a flow-induced morphological 
instability. (iv) The other extreme is one in which there is an existing morphology, 
say a set of finite-amplitude cells or dendrites, and one imposes upon this a fluid flow. 
One asks how the growth of the cellular field is altered by the flow. This will also be 
briefly discussed in $7 .  Finally, in $8 we shall discuss more general issues, such as 
when the model we have outlined may be unreliable, what other physics may need 
to be included in the models, and the need for quantitative experimentation. 

4. Volume-change convection 
The interface a t  z = h(z,  t )  is the site of a phase transformation in which the liquid 

of density pL changes to solid of density ps. Morphological changes are driven by 
solute rejection there and in addition, if p L  =+ ps ,  the interface drives a convective 
flow. For example the lead-tin alloy shrinks upon solidification, p s / p L  z 1.05, and a 
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FIGURE 5.  Transport mechanisms in volume-change convection for ps > pz :  
(a)  boundary-layer alteration, ( b )  lateral transport. 

weak flow from ‘infinity’ is generated in order to  conserve mass. Silicon alloys 
expand upon solidification, ps/pL M 0.91, and the generated flow is from the interface 
to ‘infinity’. 

The governing system of $2 must be augmented by the Navier-Stokes and 
continuity equations and supplemented by boundary conditions on the velocity a t  
infinity and a t  the interface. Since the interface is solid, the no-slip condition holds, 

u-T = 0 on z = h(z , t ) ,  (4.1) 

where v = (u, w) is the velocity in the liquid and T is the unit tangent vector to  the 
interface. The mass balance across the interface becomes 

( p L - p s ) ( V + h t )  = pL(w-uh,-hht) on z = h(x,t). (4.2) 

When pL = ps, the interface is impermeable to flow, but when pL =k ps, it acts as a 
porous surface that produces or consumes liquid at the rate required by the volume 
changes. 

The linear theory for morphological instability with volume-change convection 
was done by Caroli et al. (1985b). The following explanation is a variant of theirs. 
Consider the case of shrinkage, ps > pL, as shown in figure 5(a) .  There are two 
competing effects that are present. 

On the one hand the flow from infinity will cause the concentration boundary layer 
of thickness 6, = D /  V to be compressed so that the local gradient [Gel is increased. As 
discussed in $ 2 ,  this will enhance the morphological instability through what we can 
term boundary-layer alteration. Thus, shrinkage is destabilizing, while expansion is 
stabilizing. 



Hydrodynamic interactions in directional solidiJication 25 1 

On the other hand consider the result of an initial corrugation of the interface as 
shown in figure 5 ( b ) .  Since the interface is a no-slip surface, all streamlines cross the 
interface normally. At the crest or trough the streamlines are vertical but elsewhere 
they are curved. The curvature is accompanied by transverse velocities that, for 
ps > pL, carry the solute from the trough to the crests, as shown; this flow 
homogenizes the solute and decreases IGJ. (Note that the 'pure' MI leads to excess 
solute in the troughs.) Thus, for the case of shrinkage, the induced lateral transport 
of solute is stabilizing. 

Caroli et al. (1985b) found that low solidification speeds V ,  which correspond to 
thick concentration boundary layers, promote destabilization by shrinkage since the 
boundary-layer alteration is more effective than is lateral transport. At high speeds 
V ,  the opposite is the case. 

Brattkus (1988) took another point of view by comparing different materials. 
Materials with small segregation coefficient k reject nearly all their solute. From 
(2.12) we see that IG,J is monotonic in k and Brattkus showed that systems with small 
k are destabilized when compared to  the constant-density case; the reverse is true in 
materials with moderate k .  This switch-over in effect with material properties is 
important to understand since many experiments for convenience substitute 
transparent organics for metallics ; such a switch may also switch the influence of 
volume-change convection. 

Clearly, volume-change convection has small effects if (pL-ps ) /pL  is small. It 
should only be of importance when other modes of convection are absent or else of 
very small magnitude. Such would be the case in a microgravity environment in 
Space. It might also be important in the deep roots between cells as shown in figure 
2 ( c )  where dimensions are small and where diffusion is very slow. 

5. Coupled morphological/convective instabilities 
Consider the directional solidification of a binary liquid in which the front moves 

vertically upward as shown in figure 1. The rejected-solute profile gives not only the 
possibility of morphological instability, but also the possibility of buoyancy-driven 
convective instability. If the solute is of low density, the steady basic state consists 
of a ' heated-from-above ' temperature field and an unstably stratified concentration 
field. Thus, there can be a double-diffusive Bthard instability on a semi-infinite 
domain containing an exponentially decaying concentration profile and a (locally) 
linear temperature field. 

The linear stability theory for pL = ps has been examined in great detail (Coriell 
et al. 1980; Hurle, Jakeman & Wheeler 1982, 1983; Coriell 1984). Such theories give 
results typified by figure 6 showing, for fixed G and V ,  the mean solute concentration 
c, versus wavenumber a = 2n/h ; here c, is used as the bifurcation parameter. There 
are two coexisting neutral curves, one for the 'pure' convective mode and one for the 
'pure ' morphological. Typically, the critical wavenumbers a:') and .IM) for the two 
are widely separated, with the convective mode of much longer scale. In  the figure, 
a:?")/aLC) x 6.5 so that there is a large-scale convective flow with a small-scale 
morphology. As I' is increased the lengthscale S, in the Rayleigh number decreases. 
Thus, as V is increased, the convective curve rises while the morphological curve falls. 

At a specific value of V ,  the critical c, of both modes coincide, giving the 
possibility of a coupled instability. The bifurcation theory (Jenkins 1985; Caroli et al. 
1985a), however, shows that the wavelength disparity, mentioned above, leads to 
only a very weak coupling between the instabilities. This conclusion, howcver, is 
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FIGURE 6. Neutral curves for Pb-Sn with V = 30 pm/s and G = 200 K/cm for upward solidification 
with the rejection of low-density solute. The convective instabilities (CI) and MI have preferred 
wavenumbers a:") and respectively. Solid (dashed) curves denote steady [time-periodic) 
instability. Curves are taken from Coriell et al. (1980). 

based upon the examination of only a small set of material systems, mainly lead-tin 
and SCN-Ethanol (Schaefer & Coriell 1982). Clearly, if the linear-theory critical 
values of c ,  are common, and if u p )  = u ~ Q ,  then the two-dimensional problem has a 
codimension-two bifurcation structure and there is the possibility that strong 
interactions of the two modes would be possible; the appearance of secondary 
oscillations might then occur. More general interactions could also give rise to 
oscillations ; an example is uLM)/uLc) = 2. Riley & Davis (1989 a) have undertaken a 
systematic study of such possibilities for both these cases over wide classes of solutes, 
solvents and their material properties. Their searches are not complete, but they 
tentatively find that such interactions do occur but only a t  temperature gradients 
and speeds too small to  be physically interesting. 

Let us return to the results shown in figure 6. We see that in addition to the weakly 
coupled convective and morphological instabilities predicted, Coriell et al. ( 1980) find 
a new mode, indicated by the dashed curve, which represents a time-periodic 
instability generated by the coupling of the two pure modes. For the lead-tin system, 
this time-periodic instability is not the first one to  appear under ordinary operating 
conditions, though i t  can under extreme conditions of low G. S. R. Coriell (private 
communication) finds this to be the case for Pb-8n when G = 0.1 K/cm and 
V = 10 pm/s. Schaefer & Coriell (1982) show for SCN-ethanol that the mode is 
present and can under ordinary conditions be preferred theoretically, as shown in 
figure 7 (though it was not observed in their experiment). These theoretical results 
are very interesting, but ones that caution the crystal grower. The 'attempt' to 
impress convective flow on a growing crystal may give rise to unwanted oscillations, 
rather than the homogenization that one sought. 

The physical mechanism responsible for this oscillatory 'mixed' mode is not 
explained. However, consider the concentration field for the two uncoupled steady 
modes. The principal eigenfunction c of MI has maximum (minimum) concentration 
over the crests (troughs) of the interface corrugation as shown in figure 8 ( a ) .  When 
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FIGURE 7 .  Keutral curves for SCN-ethanol for V = 3 pm/s and G = 10 K/cm for upward 
solidification with the rejection of low-density solute. The steady morphological mode (solid line) 
and the time-periodic (PI) mixed mode (dashed line) are shown. The steady convective mode (CI) 
is not shown. Curves are taken from Schaefer & Coriell (1982). 

(4 (b) 

FIGURE 8. Sketch of eigenfunctions for linear stability theory for (a)  morphologicd and (b )  
convective instabilities. The symbols + and - indicate signs of concentration perturbations at  the 
interface. 

buoyancy is present, and the solute Rayleigh number R is small, the low-density 
solute is transported laterally and will flow up the hills as shown in figures 8 ( a )  and 
9 (a). When R > R,, the situation reverses and the principal eigenfunction c involves 
vertical rises from the troughs and lateral transport that conserves mass. The 
eigenfunction of the convective instability modes would have the concentration 
elevated (depressed) above troughs (crests) as shown in figure 8(b ) .  This picture has 
been verified by numerical calculation for one case by S. A. Forth & A. A. Wheeler 
(private communication). The two disturbance fields have competing concentration 
distributions and concommitant competing velocity distributions. At a wavenumber 
like a z 140 cm-l in figure 6, where neither steady mode dominates, the oscillation 
might well flip back and forth between the two distributions, with the precise 
phasing among v ,  c and h determining both the critical instability conditions and the 
frequency of oscillation. Such oscillatory states do occur in two-layer BBnard 
convection as described by Rasenet, Busse & Rehberg (1989). 

For most common materials then a:.") 9 a:."). However, there is the possibility that 
limiting cases exist which display a stronger coupling. Sivashinsky (1983) showed €or 
the pure-morphological problem that, for k -+ 0, 

(5.1) a ( M )  - hi. 
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FIGURE 9. Upward solidification with rejection of low-density solute : (a) the  lateral transport, ( 6 )  
the linear-theory curves for asymptotically small-k materials. Curves are taken from Young & 
Davis (1986). The hatched area corresponds to  the stabilization of MI by buoyancy. 

Riley & Davis (1989b) show for the pure-convective problem that, for k+O,  

a:.") - ki,  (5 .2)  

as well. Young & Davis (1986) examined the small-k limit for the coupled 
convective/morphological problem, and find a promising effect, as shown in figure 
9(b) .  Above the line of Rayleigh number R = R, = 2(1+ S-') there is convective 
instability as shown by Hurle et al. (1982, 1983). However, there is another curve 
R = R(M) to the right of which lies the region of M I  as modified by buoyancy. Thus, 
for R < R,, the morphological instability is delayed by buoyancy. This is an effect of 
lateral transport as discussed above as shown in figure 9 (a). Consider the basic state 
perturbed initially by an interface corrugation. The rejected solute, if it is light, 
moves via a baroclinic motion, from troughs to crests, lowering the local IGJ ; there 
is an effective segregation coefficient produced, which has the value k[ 1 - (R/R,)]-' 
which is larger than k and gives an effectively smaller JGJ. This delay of interfacial 
instability is a small one, but one of the new found to date. 

The inability of workers to find beneficial couplings between morphological 
instability and buoyancy-driven convection has led some to examine simpler 
interactions in the hope that detailed understanding of coupling mechanisms will 
lead to effective control of morphological instability. Thus, rather than attempting 
to couple complex convective flows to the front, prescribed flows of different types 
have been examined. Apart from representing the 'poor man's convection ', these 
flows can represent actual process conditions such as the effect of the rotation of the 
crystal, These topics are taken up now. 
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6. Forced flows 
The study of forced flows over solidifying interfaces aims at  understanding how the 

solute redistribution by the flow alters morphological instabilities or creates new 
instabilities. Further, forced flows serve as a surrogate, allowing one to isolate certain 
effects of convection in the melt and focusing on one-way couplings. 

The first studies of forced flows were those of Delves (1968, 1971) who imposed a 
Blasius boundary layer on the interface and used the locally parallel-flow 
approximation ; in effect they examined wavelengths short compared to the 
spreading length of the boundary layer. Arguments of local parallelism led Coriell 
et al. (1984) to impose plane Couette flow upon the interface. 

If one pictures an imposed flow across an interface at ‘infinity’ and allows the 
solidification to  proceed, the interface acts as a porous boundary and the forced flow 
has the asymptotic-suction profile, a boundary-layer flow on the scale 6,, the viscous 

(6.1) 
boundary-layer thickness, 

The velocity component along the interface has the form 

u cc 1 -e-z’Bv. (6.2) 

6” = v/v. 

The linear-theory problem for profile (6.2) coupled with MI was examined by Forth 
& Wheeler (1989). 

Given that the concentration and thermal boundary layers scale on 6, and 6,, there 
are three lengths involved in such problems. 

When one has an organic mixture, then 

6, ST < 6, ( 6 . 3 ~ )  

since 6,/6, = V / K  = P, and the Prandtl number P is large. However, if one has a 
small-Prandtl-number metallic alloy, then 

6, < 6, 6 6,. (6.3b) 

These inequalities are relevant when one considers disturbances of various 
wavelengths A. The ‘normal ’ situation described in $2 has h < 6, so that the thermal 
field and the velocity field can be represented in locally linear forms: 

T = T,+Gz ( 6 . 4 ~ )  

and 
V 

U - -2, 
V 

(6.4b) 

the latter being the plane Couette flow considered by Coriell et al. (1984). However, 
when A becomes large enough, these localizations are no longer valid since the 
disturbances are affected by the curvature of the profiles. As discussed in $2, the 
distance L+ from the interface to the upper heat source is a relevant lengthscale as 
well. 

Coriell et al. (1984) and Forth & Wheeler (1989) find that MI is delayed by two- 
dimensional disturbances; these propagate with the flow. On the other hand 
disturbances in the form of longitudinal rolls decouple from the MI. Thus, under 
normal operating conditions parallel flows do not alter the critical conditions for MI. 
They only serve to select a preferred mode, longitudinal rolls, since these have the 
smallest V,. Neither of these analyses examine those limiting cases that lead to long- 
wave MI. Forth & Wheeler do find small-wavenumber modes that can promote MI 



256 S. H .  Davis 

t z ’ w  

FIGURE 10. Two-dimensional stagnation-point (Hiemenz) flow impressed upon a solidifying 
interface. The waves on the interface propagate towards the stagnation point. 

and involve propagation of waves against the flow. However, they do not identify 
conditions under which they are preferred, 

Most imposed flows are not parallel. These range from the von KarmBn swirl flow 
generated by the rotation of the crystal to  the locally hyperbolic flows present when 
cellular convection exists a t  the interface. 

Brattkus & Davis (1988b, c) studied flows with hyperbolic streamlines directed 
upon a solidifying interface. These were, respectively, a von KQrman swirl flow and 
stagnation-point flows. We discuss here the simplest of these, two-dimensional 
stagnation-point flow. Figure 10 shows the Hiemenz flow, which at  z = co has the 
form 

where F is a function that is known numerically and K measures the strength of the 
flow. The linear-stability problem is made tractable by assuming that the viscous- 
boundary-layer thickness 6, is much larger than the concentration-boundary-layer 
thickness 6, and that the Schmidt number S is very large. Explicitly, it is assumed 

u - (Ku)~xF’(z ) ,  w - -(Ku);F(z),  (6.5) 

that 

Note that 6, here is distinct from that in (6.1). Given the smallness of S,, the interface 
senses only the local forms of the imposed flow and the flow senses a flat interface; 
thus, 

u - px5, w -$PP$, (6.7) 

where [ = %/ac, and p measures F ” ( O ) ,  the local shear. Finally, Brattkus & Davis 
considered waves long compared to 6, though smaller than 6,. They solved the 
modified diffusion problem 

c& +;p!3cg-P&z = c, (0 < 5 < a), ( 6 . 8 ~ )  

cg+(l--M-’)-lc,+[k(l-M-’)-’+(l-k)Jc = 0 (<= 0) (6.8 b )  

c ( c o )  = 0. ( 6 . 8 ~ )  

Here M = mG,/G is the morphological number that measures constitutional 
undercooling, and 7 is a scaled (slow) time. Note that the long-wave approximation 
leads to the neglect of the lateral diffusion term cxx. This neglect is justified only far 
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FIQURE 11. Keutral curve, M versus lal, for long two-disturbances on a Hiemenz flow against a 
solidifying interface according to Brattkus & Davis (1988~) for k = 0.3. Here is a non-dimensional 
measure of the shear stress exerted by the Hiemenz flow on the interface (Brattkus & Davis 1988~). 

away from the stagnation point a t  x = 0 but makes tractable the solution of the 
linear-stability problem (6.8). 

The non-parallel flow gives rise to the convective term xc, that is scale invariant 
and so survives the long-wave approximation. The system (6.8) can be solved by 
employing quasi-normal modes as follows : 

c(x, [,7) = emfialnz C(C) (6.9) 

which converts system (6.8) into a constant-coefficient eigenvalue problem for 
growth rate (T = a ( k , M ; a ) .  The system is solved numerically and figures 11 and 12 
show the neutral curves and the frequency Im(g) along the neutral curve. 

The flow produces a long-wave instability that creates waves that travel inward, 
toward the stagnation point. The normal modes (6.9) are locally periodic in x but not 
globally so. The instability exists for long waves, in a region where the Mullins & 
Sekerka condition gives only stability. Thus, we call this $ow-induced morphological 
instability. The largest growth rate Re (a) occurs for a+ co where the long-wave 
theory is invalid and where surface energy should help stabilize the interface. Thus, 
‘longish’ waves would be preferred and these would grow for M just above unity, i.e. 
for any degree of constitutional undercooling; thus, it is a MI. The conjectured 
neutral stability curve, valid for all wavenumbers, would be as shown in figure 13. 
When the wavenumbers are large, the disturbances see only the local velocities and 
the flow appears to  be locally parallel. The dashed curve of figure 13 shows the 
analogue of the results of Coriell et al. (1984) appropriate to locally parallel flows. 
When the wavenumbers are small, the disturbances see the curvature of the 
streamlines and hence the non-parallel-flow effects found by Brattkus & Davis 
(1988c), as shown in the solid curve of figure 13. 
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FIGURE 13. Conjectured neutral curve, M versus (a( ,  shown as the solid curve for general two- 
dimensional disturbances on a Hiemenz flow against a solidifying interface according to  Brattkus 
& Davis (19886). For small a. non-parallel effects dominate; for other a the  curve coincides with 
the locally parallel theory of Coriell et al. (1984) as shown by the dashed curve. 

The destabilization by non-parallel flow depends on both velocity components. 
The component normal to the mean position of the interface is directed inward. I ts  
presence causes boundary-layer alteration. The concentration boundary layer is 
compressed, steepening the local gradient IQJ. The lateral component of velocity 
(linear in x) varies with distance from the stagnation point and produces horizontal 
concentration gradients that drive the travelling cells that propagate into the 
oncoming flow. Brattkus & Davis (19886) argue that these instabilities may be 
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responsible for the ‘rotational striations ’ present in crystals produced in devices 
using crystal rotation. 

The destabilization of long waves in the x-direction may be negated by ‘end’ 
effects that disallow the ‘fitting’ of such waves in the system. I n  this case the results 
of Coriell et al. (1984) would be regained. One could then allow disturbances of the 
form 

c(y ,  z ,  t )  = eUtfibYC(z) (6.10) 

for cross-stream periodic waves that are x-independent ( a  = 0). The full stagnation- 
point flow linear-stability problem has been examined in this case by McFadden, 
Coriell & Alexander (1988). They find that the flow slightly stabilizes MI. 

The effects of unsteadiness in the melt flow have been investigated by Merchant & 
Davis (19894. They consider plane stagnation-point flow against the interface but 
allow the flow a t  infinity to be time periodic, where the strength K of the flow in (6.5) 
is replaced by a time-periodic function as follows : 

K+KO(wt)  = K[l+Scoswt] .  (6.11) 

They again consider long-wave two-dimensional disturbances and find that system 
(6.8) is replaced by the following: 

C C 5 + [ l  +~~Of(?)~*]c3-P0f(7)x~c;Cz = yc,, (6.12 a )  

(6.12 b) 

c ( c 0 )  = 0, (6.12 c )  

where y = w D / P  (6.12 d )  

is the scaled forcing frequency. They find that modulation a t  low frequency stabilizes 
the interface against flow-induced morphological instabilities while high frequency 
promotes the instabilities. The response of the system to instability is quite complex 
with a disturbance being composed of two independent frequencies, the imposed 
frequency and the travelling-wave frequency modified by the modulation. 

c5 + y( 1 -M-1)-1c7 + [k( 1 -M-1)-1+ (1  - k)] c = 0 (t: = 0)’ 

7. Flow over cells or dendrites 
Consider the flow of magnitude over an isolated cell or dendrite tip of diameter 

d .  If the flow is slow, so that the Reynolds number Re = U , d / v  < 1, then the 
streamlines are symmetric front to back (upstream to downstream). However, the 
convection of solute may be substantial if the diffusivity D is small enough. 
Typically, U / v  is in the range to lo-’ so that the PBclet number Pe = U,,d/D 
may be appreciable. In this case the isopycnals will not be symmetric since the flow 
sharpens the gradient in the front and weakens the gradient in the back. Given the 
steepened gradient in the front, the cell will modify its growth direction and will tilt 
into the shear flow; the front grows faster than the rear. This argument is due to 
Dantzig & Chao (1986) who verified this effect by experiment and by numerical 
simulation. This effect is not the result of an instability, but is due to boundary-layer 
alteration. 

Consider now a row of such cells spaced along the flow direction. If the spacing is 
sufficiently large, the cells fail to  ‘interfere’ with one another and the Dantzig/Chao 
effect will still tilt the cells flow-ward. As the spacing is decreased, ‘interference’ will 
occur and the tilting should be modified. These modifications may be related to the 
phenomena of MI/flow interactions discussed in $6. Brattkus & Davis (19886, c) 
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found for non-parallel flows that long waves can produce a flow-induced MI that 
travels into the flow along the interface ; presumably the nonlinear manifestation of 
this is the tilting of the cells. Now when conditions are such that wavelengths are not 
‘long ’, the instability waves will reverse the direction of propagation and the finite- 
amplitude cells might then alter their tilts. The possible relation between the flow 
over developed cells and interactive instabilities is intriguing. 

A problem of vital interest to materials researchers is the coupling of convection 
with dendritic structures within and near the ‘mushy’ zone. The mushy zone is the 
two-phase region partially occupied by a field of dendrites (well above the MI 
threshold) and partially occupied by the interstitial fluid (enriched in solute). There 
are many models in which this zone is viewed as a porous material whose properties 
link dynamically with the overlying convective flow. The reader is referred to 
Huppert (1990) for an overview of these works. 

8. Discussion 
Unidirectional solidification is a means for the creation of phase change under 

controlled conditions. It is a vehicle for the study of the small-scale processes that 
determine the properties of the crystalline solid. At the interface latent heat is 
created and solute is rejected (or incorporated). These are diffused away from the 
interface and also convected by bulk motion of the liquid. 

The mathematical description of such coupled systems typically involves fifteen or 
twenty parameters so that an understanding of the physics is necessary before one 
can even contemplate ‘design’. Thus, in this paper we have emphasized physical 
mechanisms and have studied only the simplest systems available. Even then only 
a partial picture exists on how hydrodynamics and morphological changes couple. 
The discussion has emphasized mechanisms as a means of understanding, but also as 
a means of interesting experimentalists, who test the theories and identify new 
phenomena whose explanation would challenge the theoretician. The author knows 
of no quantitative experimental work on MI coupled to fluid flows. Recently de 
Cheveignd, Guthmann & Lebrun (1985, 1986), Eshelman & Trevedi (1987), and de 
Cheveignk et al. (1988) have tried to  compare quantitatively experiments and theory 
on pure MI. The last of these finds discrepancies between critical wavelengths of cells 
which are partly attributable to the fact that the onset of instability occurs through 
a jump transition (at a subcritical bifurcation). However, Merchant & Davis (1989b) 
show on the basis of existing theories that supercritical bifurcation is experimentally 
accessible on the lower branch even with SCN-A. 

To be sure experiments in this field are very delicate since for example one must 
know accurately the identities and levels of contaminants in the liquid. One must 
keep careful control on the thermal field and ensure that the eoncentration profiles 
(in the basic state) are time independent. All these things are necessary for the 
simplest model that we have described. There can as well be departures from this 
model intrinsic to the material. If the pulling speed V is too large for local 
thermodynamic equilibrium to apply, then kinetic effects may be present a t  the 
interface. Models of these exist (e.g. Coriell & Sekerka 1976) ; these lead to travelling 
waves on the interface in linear theory (Coriell & Sekerka 1976) and cells in the 
nonlinear range that tilt with respect to the growth direction (Young, Davis & 
Brattkus 1986). Further, if the surface energy y of the interface is markedly 
anisotropic so that y depends on crystalline orientation, then strong tilting of the 
cells can occur as well (Heslot & Libchaber 1985). Thus, both the choice of material 
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and the range of operation can be crucial. Nonetheless, the opportunity exists 
for good fluid-mechanical experimentation in hydrodynamically-morphologically 
coupled systems. 

I am pleased to dedicate this article to George Batchelor, whose uncompromising 
standard of excellence is a model for us all. 

This article has benefitted greatly from the suggestions of several individuals : K. 
Brattkus, R. J .  Braun, S. R. Coriell, H. E. Huppert, G. J. Merchant, D. S. Riley and 
M. G. Worster. The author is indebted to S. A. Forth and A. A. Wheeler for 
undertaking the computation discussed in $5. He greatly appreciates the efforts of 
his secretary, Judy Piehl, who types what is meant rather than what is written, and 
the research support of the National Aeronautics and Space Administration, 
Microgravity Science and Applications Program. 
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